Chapter 7

7.1 Let T be the outcome of a roll with a fair die.
a)

Outcomes	1	2	3	4	5	6
Probability Mass	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$
Cumulative Dist.	$1 / 6$	$2 / 6$	$3 / 6$	$4 / 6$	$5 / 6$	1

b)
$\mathrm{E}[\mathrm{T}]=1 \times 1 / 6+2 \times 1 / 6+3 \times 1 / 6+4 \times 1 / 6+5 \times 1 / 6+6 \times 1 / 6=3.5$
$\operatorname{Var}(\mathrm{T})=1 / 6 \times(1-3.5)^{\wedge} 2+1 / 6 \times(2-3.5)^{\wedge} 2+1 / 6 \times(3-3.5)^{\wedge} 2+1 / 6 \times(4-3.5)^{\wedge} 2+$ $1 / 6 \times(5-3.5)^{\wedge} 2+1 / 6 \times(6-3.5)^{\wedge} 2$
$=1 / 6(6.25+2.25+.25+.25+2.25+6.25)=2.917$
7.2 X is a random variable with the following distribution
$\mathrm{P}(\mathrm{X}=-1)=1 / 5$
$\mathrm{P}(\mathrm{X}=0)=2 / 5$
$\mathrm{P}(\mathrm{X}=1=2 / 5$
a)
$E[X]=-1 \times 1 / 5+0 \times 2 / 5+1 \times 2 / 5=1 / 5$
b) $Y=X^{\wedge} 2$
$\mathrm{P}(\mathrm{Y}=0)=2 / 5$
$\mathrm{P}(\mathrm{Y}=1)=3 / 5$
$\mathrm{E}[\mathrm{Y}]=0 \times 2 / 5+1 \times 3 / 5=3 / 5$
c)

The change of variable formula for expectation is
$(-1)^{\wedge} 2 \times 1 / 5+0^{\wedge} 2 \times 2 / 5+1^{\wedge} 2 \times 2 / .5=1 / 5+0+2 / 5=3 / 5$ which agrees with b)
d)
$\operatorname{Var}(\mathrm{X})=1 / 5 \times(-1-1 / 5)^{\wedge} 2+2 / 5 \times(0-1 / 5)^{\wedge} 2+2 / 5 \times(1-1 / 5)^{\wedge} 2$
$=1 / 5 \times 1.44+2 / 5 \times 0.04+2 / 5 \times .64=0.552$
7.9 U is a random variable with distribution $\mathrm{U}(\mathrm{a}, \mathrm{b})$
a) The probability density function $\mathrm{F}(\mathrm{u})=1 /(\mathrm{b}-\mathrm{a})$ if $\mathrm{a} \leq \mathrm{u} \leq \mathrm{b}, 0$ otherwise.

The anti-derivitave of $\mathrm{u} \times \mathrm{F}(\mathrm{u})$ is
$\mathrm{u}^{\wedge} 2 /(2 \times(\mathrm{b}-\mathrm{a}))$
So the definate integral is $\left(b^{\wedge} 2-a^{\wedge} 2\right) /(2 \times(b-a)=(b-a)(b+a) / 2(b-a)$ $=(a+b) / 2$.
b)

To find the $\operatorname{Var}(\mathrm{U})$ we integrate $1 /(\mathrm{b}-1) \times(\mathrm{u}-(\mathrm{a}+\mathrm{b}) / 2)^{\wedge} 2$ from a to b .
This gives $(a+b)^{\wedge} 2 / 12$
7.13

For any random variable X ,
$0 \leq \operatorname{Var}(\mathrm{X})=\mathrm{E}\left[\mathrm{X}^{\wedge} 2\right]-(\mathrm{E}[\mathrm{X}])^{\wedge} 2$
Re-arranging terms gives
$E[X]^{\wedge} 2 \geq(E[X])^{\wedge} 2$.
7.14

We choose an arbitrary point from a square with vertrices at $(2,1),(3,1),(2,2)$, and $(3,2)$. Let A be the random variable which is the area of the triangle formed by the chosen point and the points $(2,1)$ and $(3,1)$

This area will be given by the half the product of the $(y-1)$ and the distance from $(2,1)$ to $(3,1)$ (which is of course 1), where y is the y-coordinate of the chosen point.
Thus $\mathrm{A}=(\mathrm{Y}-1) / 2$. Y is uniformly distributed between 1 and 2 . Its expected value is 1.5 Thus E[A] $=\mathrm{E}[\mathrm{Y}] / 2-1 / 2=1.5 / 2-.5=1 / 4$

